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• Novel use of source apportionment
methods in human biological samples

• Identification of human exposure from
blood samples

• Identification of now controlled exposure
sources

• Methods have limitations but show promise
for expanded uses.
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Per- and polyfluoroalkyl substances (PFASs) are synthetic chemicals that are ubiquitous in environmental and biolog-
ical systems, including human serum. PFASs are used inmany products and industrial processes and are tied to numer-
ous health effects. Due to multiple sources and exposure pathways, methods are needed to identify PFAS sources in
communities to develop targeted interventions. We assessed effectiveness of three source apportionment methods
(UNMIX, positive matrix factorization [PMF], and principal component analysis - multiple linear regression [PCA-
MLR]) for identifying contributors to human serum PFAS concentrations in two highly exposed populations in
Colorado and North Carolina where drinking water was contaminated via upstream sources, including a Space
Force base and a fluorochemical manufacturing plant. UNMIX and PMF models extracted three to four potential
PFAS exposure sources in the Colorado and North Carolina cohorts while PCA-MLR classified two in each cohort.
No sources were characterized in NHANES (National Health and Nutrition Examination Study). Results suggest that
these three methods can successfully identify sources in highly exposed populations. Future PFAS exposure research
should focus on analyzing serum for an expanded PFAS panel, identifying cohorts with other distinct point source
exposures, and combining biological and environmental data to better understand source apportionment results in
the context of PFAS toxicokinetic behavior.
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aqueous film forming foams (AFFF) (Buck et al., 2011). PFASs have a range
of mechanisms of action in the human body and varied behavior in the
environment (Buck et al., 2011; Agency for Toxic Substances and Disease
Registry (ATSDR), 2021). Though few PFASs have been studied exten-
sively, exposure to these substances at occupational and environmental
levels has been associated with an array of adverse health effects (Agency
for Toxic Substances and Disease Registry (ATSDR), 2021; Sunderland
et al., 2019). Since production began in the 1930s, PFASs have become
globally pervasive due to their widespread use, persistence and mobility
(Sunderland et al., 2019; Vestergren and Cousins, 2009; Armitage et al.,
2009; Mueller and Yingling, 2017; Land et al., 2018). Because of this, and
varied exposure pathways, it is imperative that investigators identify key
sources of exposure to develop targeted interventions.

Receptor-based methods for source apportionment are often used for
identifying contamination sources and source contributions in environmen-
talmedia. Some of thesemodels (i.e. chemicalmass balance [CMB]) require
known source profiles (Hopke, 2016; Miller et al., 1972), which are rarely
available for PFAS-contaminated communities. Models have been devel-
oped to resolve sources in mixtures without a priori knowledge of sources
(Hopke, 2016; Henry, 2002; Paatero and Tapper, 1994). Such models
include United States Environmental Protection Agency (USEPA)-devel-
opedUNMIX, positivematrix factorization (PMF), and principal component
analysis-multiple linear regression (PCA-MLR) (Hopke, 2016; Paatero and
Tapper, 1994; Henry, 2003; Harrison et al., 1996; Larsen and Baker,
2003; Reff et al., 2007; Thurston and Spengler, 1985). These models have
been successfully used for source apportionment of PFASs in environmental
media (Li et al., 2020; Kuroda et al., 2014; Liu et al., 2019; Qi et al., 2017;
Qi et al., 2016; Xu et al., 2018; Xu et al., 2013). While many source appor-
tionment studies have used receptor models to determine source contribu-
tions from environmental media, the models have rarely been used for
biological media (Rodenburg and Delistraty, 2019; Rodenburg et al.,
2015; Jovanović et al., 2019). Many studies in exposed communities lack
a priori knowledge of all exposure sources and/or do not have access to
environmental samples from the time of the contamination. This means
that biological measurements are often the best source for reconstructing
prior exposure. Therefore, an understanding of model utility for biological
matrices is important. This work uses multivariate receptor models–
UNMIX, PMF and PCA-MLR–to evaluate putative sources of PFASs mea-
sured in serum samples from cohorts in Colorado (CO) and North Carolina
(NC), United States (U.S.), along with a population representative of U.S.
background exposures from 2015 to 2016. While some sources of contam-
ination are known in these communities, many other PFAS concentrations
in the blood samples are elevated relative to the expected background expo-
sure, indicating multiple unknown sources of contamination. Measure-
ments of the water sources for both the NC and CO cohorts also indicate
exposure sources beyond the known sources of PFAS exposure (Kotlarz
et al., 2020; McCord and Strynar, 2019; Hopkins et al., 2018; Sun et al.,
2016; Strynar et al., 2015; Nakayama et al., 2007). These cohorts lacked
sufficient environmental samples or information on important exposure
metrics like diet and, therefore, using source apportionment methods on
biological samples may help reconstruct prior exposure. The overall objec-
tive of this work was to assess the utility of multiple source apportionment
methods while elucidating source contributions using serum samples from
populations exposed to varying PFAS sources. We expected to identify at
least one source that aligns with known sources of PFAS contamination in
these populations and additional sources that represent currently unidenti-
fied sources of exposure. This allows us to estimate the exposure contribu-
tions, the total contribution to overall exposure, of the known sources of
PFASs and an indication of themagnitude of the other unidentified sources.

2. Methods

2.1. Colorado and North Carolina communities and contamination sources

Data from two on-going research studies, occurring in PFAS-exposed com-
munities in Colorado (CO) and North Carolina (NC), were used to assess the
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utility of these models in determining exposure contributions of serum PFAS.
The CO site is located in El Paso County, where approximately 80,000 people
were exposed to high concentrations of perfluorooctanesulfonic acid (PFOS),
perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS) and
other PFASs originating from AFFF use at nearby Peterson Space Force Base
(formerly Peterson Air Force Base) (Barton et al., 2020). The NC site is in
New Hanover County, where approximately 200,000 people were exposed
to PFAS-contaminated drinking water sourced from the Cape Fear River
(Kotlarz et al., 2020). This PFAS contamination was made up in part by
perfluoroalkyl acids (PFAAs; e.g., PFOS, PFOA, and PFHxS) from currently
unidentified sources upstream of the drinking water intake and in part
by PFASs known as novel fluoroethers which were released from a
fluorochemical manufacturing facility (Kotlarz et al., 2020); fluoroethers
are a newer class of PFASs that have the traditional perfluoroalkyl carbon
chains characteristic of PFAAs, such as PFOA, but interrupted by ether
oxygen(s). Fluoroethers, including hexafluoropropylene oxide dimer acid
(HFPO-DA, a.k.a. GenX), and perfluoro-3,5,7,9-tetraoxadecanoic acid
(PFO4DA), were discharged into the Cape Fear River by a fluorochemical
facility 80 miles upriver from the public water utility intake (McCord and
Strynar, 2019; Sun et al., 2016; Strynar et al., 2015; Zhang et al., 2019;
Wagner and Buckland, 2017; McCord et al., 2018).

Select characteristics from each cohort are presented in Supplemental
Table 1. In Supplemental Fig. 1 distributions of select serum PFAS concen-
trations from both studies are displayed along with U.S. national reference
range concentrations measured in the 2015–2016 National Health and
Nutrition Examination Survey (NHANES) (NHANES, n.d.). NHANES is an
annual survey that collects information from a representative sample to
assesses the health of the U.S population (NHANES, n.d.).

2.2. CO dataset

The CO study population, design, and procedures are described in detail
elsewhere (Barton et al., 2020). Briefly, in spring 2018, 213 non-smoking
adults who resided for at least two years in an area with AFFF-
contaminated drinking water were recruited for the study. Blood samples
were collected, and a questionnaire administered. Participants relied on a
PFAS-impacted private well (N = 16 participants) or resided in one of
three PFAS-impacted water districts (Fountain, Security, or Widefield)
(N = 197 participants). PFAS water concentrations in the water districts
displayed a north to south gradient (Security > Widefield > Fountain)
moving away from the AFFF contamination source, as did certain PFAS
(i.e., PFHxS) serum concentrations (Barton et al., 2020). While AFFF in
drinking water is a known source of exposure in this cohort, the contribu-
tion of the AFFF has not been quantified and additional samples to charac-
terize other local exposures (e.g., local diet, indoor and outdoor air)
have not been collected. Blood samples were analyzed for 48 PFASs at the
Colorado School of Mines. Details of the laboratory methods are described
elsewhere (McDonough et al., 2021).

Eleven PFASs were detected in the serum of≥50 % of CO study partici-
pants (Table 1). Four PFASs (PFOA, PFHxS, PFOS, and perfluorononanoic
acid (PFNA)) were detected in≥98 % of participants. Other PFASs detected
in ≥50 % of participants included: Perfluoro-n-heptanoic acid (PFHpA),
perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUdA),
perfluoropentanesulfonic acid (PFPeS), perfluoroheptanesulfonic acid
(PFHpS), 2-(N-Methylperfluorooctanesulfonamido) acetic acid (MeFOSAA),
and the tentatively identified unsaturated perfluorooctanesulfonic acid (U-
PFOS), which contains two fewer fluorines and one double bond within the
perfluorinated chain (McDonough et al., 2021).

2.3. NC dataset

The NC study population, design, and procedures are also described
in detail elsewhere (Kotlarz et al., 2020). Briefly, 344 residents of New
Hanover County, ages 6 years and older, living in a home served with
Cape Fear Public Utility Authority (CFPUA) drinking water for at least
12 months prior to November 2017, were recruited for the study. Blood



Table 1
PFASs detected in>50% of participants for each cohort used as a starting point for inclusion in the threemodels. Not all PFASs listed belowwere included in thefinal selected
models.a

PFAS Full name DTXIDb CO cohort NC cohort

%
Detected

Detection limitc

(ng/mL)
%
Detected

Detection limitc

(ng/mL)

Perfluoroalkyl carboxylic acids (PFCAs)
PFHpA Perfluoroheptanoic acid 1037303 56 0.01–0.10 63 0.1–0.3
PFOA Perfluorooctanoic acid 8031865 100 0.01–0.10 100 0.1–0.5
PFNA Perfluorononanoic acid 8031863 98 0.01–0.20 97 0.1–0.9
PFDA Perfluorodecanoic acid 3031860 85 0.01–0.20 – –
PFUdA Perfluoroundecanoic acid 8047553 66 0.01–0.20 – –

Perfluorosulfonic acids (PFSAs)
PFPeS Perfluoropentanesulfonic acid 8062600 81 0.01–0.20 – –
PFHxS Perfluorohexanesulfonic acid 7040150 100 0.11–1.0 98 0.1–1.8
PFHpS Perfluoroheptanesulfonic acid 8059920 99 0.01–0.04 – –
U-PFOS Unsaturated perfluorooctanesulfonic acid NA 89 0.01–0.20 – –
PFOS Perfluorooctanesulfonic acid 3031864 100 0.10–2.0 99 0.1–0.5
MeFOSAA 2-(N-Methylperfluorooctanesulfonamido)acetic acid 10624392 52 0.01–0.20 – –

Novel fluoroethers
Nafionbp2 Perfluoro-2-{[perfluoro-3-(perfluoroethoxy)-2-propanyl]oxy}ethanesulfonic acid 10892352 – – 99 0.1–0.12
PFO4DA Perfluoro-3,5,7,9-tetraoxadecanoic acid 90723993 – – 98 0.1–0.11
PFO5DoA Perfluoro-3,5,7,9,11-pentaoxadodecanoic acid 50723994 – – 88 0.1

a UNMIX and positive matrix factorization (PMF) allow user to add and delete species to evaluate how these changes impact the fit of the resulting solution.
b DTXSID is a unique substance identifier used in the U.S. EPA CompTox Chemistry Dashboard (Williams et al., 2017).
c Multiple analytical runs were used to analyze sample sets, causing some run-to-run variation in detection limits. The range of detection limits for each compound is

provided.

Table 2
Model assumptions and selection criteria. The model assumptions differ in some
places across the models. The selection criteria were used to select the final models
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samples were collected, and a questionnaire administered. Samples
were analyzed at U.S. Environmental Protection Agency (EPA) in Research
Triangle Park, North Carolina. Eight PFASs were detected in≥50 % of NC
study participants (Table 1). Two fluoroethers (Nafion byproduct 2 and
PFO4DA) and four PFAAs (PFOS, PFOA, PFHxS, and PFNA) were found
in ≥97 % participants. Other PFASs detected in ≥50 % of participants
included perfluoro-3,5,7,9,11-pentaoxadodecanoic acid (PFO5DoA) and
PFHpA. Samples representative of exposure to fluoroethers via this popula-
tion's drinking water were not available because the source of contamina-
tion was shut off prior to the, and levels of fluoroethers have dropped
substantially since then (Kotlarz et al., 2020; Hopkins et al., 2018; Sun
et al., 2016; Zhang et al., 2019). Zhang et al. (2019) provides a snapshot
of the presence of novel fluoroethers in the Cape Fear River prior to
discharge control (Zhang et al., 2019).
from the multiple models that were tested.

Model assumptions UNMIXa PMFb PCA-MLRc

Chemical mass balance x x
Linear correlation x
Normality x
Source composition approximately constant x x
Positive contributions x x
Selection criteria
High model R2 x x x
High compound R2 x x
High S/N x x
User discretion on set of included compounds x x x
Identification and adjustment of influential outliers x x
Runs Fall Within IQR of Bootstraps x x
No significant negative bias x
No errors, significant changes in Q, or significant swaps
in sources during bootstrap-displacement

x

No source swaps during bootstrap-displacement x
Qtrue/Qexp close to 1 x
Close to 100 bootstrap runs for 100 feasible results x
Primary goodness-of-fit metric S/N Q R2

Abbreviations: PMF, positive matrix factorization; PCA-MLR, Principal component
analysis-multiple linear regression; S/N, Signal to noise ratio; IQR, interquartile
range.

a Norris et al., 2007.
b Norris et al., 2014.
c Thurston and Spengler, 1985.
2.4. Receptor modeling

The three multivariate receptor models used in this analysis (UNMIX,
PMF, and PCA-MLR) were run for each cohort individually (Thurston and
Spengler, 1985; Norris et al., 2007; Norris et al., 2014). The CO serum
results were also stratified by water district of residence (PMF only) to eval-
uate if exposure contribution varied when residential water was sourced
further from the primary water contamination source (i.e., AFFF released
from Peterson Space Force Base). The model objectives are to identify the
number of sources, composition of each source, and exposure contributions
for chemical constituents in each sample. For each model, an analyte inclu-
sion requirement of≥50 % detection (above the limit of detection or LOD)
within each cohort was used to ensure accuracy, and ½ the LOD was
substituted for PFASmeasurements below the LOD as established in similar
works (Li et al., 2020; Qi et al., 2017; Xu et al., 2018). Other methods that
can be used for censored environmental data are maximum likelihood esti-
mation, survival analysis, and non-parametric approaches (Helsel, 2012).
While substitution remains the most common, these approaches can be
much more robust, especially when data with <50 % detects is included
(US EPA, n.d.-a). With this requirement, 11 PFASs were included for CO,
8 PFASs were included for NC, and 5 PFASs were included for NHANES.
PFASs included in the initial models and their abbreviations are displayed
3

in Table 1. Unmix and PMF both have built in methods to assess the robust-
ness and stability of each model including bootstrapping, rotation, and as-
sessment of influential points. Table 2 compares the assumptions across
each model and selection criteria used for determining the most appropri-
ate solution using each method (Reff et al., 2007; Thurston and Spengler,
1985; Norris et al., 2007; Norris et al., 2014). Multiple combinations of
compounds and numbers of sources were tested where appropriate, and
these criteria were compared across models to select the best model for
source characterization.
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2.5. UNMIX model

USEPA's UNMIXModel software version 6.0was employed for this anal-
ysis (Henry, 2003; Norris et al., 2007). UNMIX assumes all concentrations
are positive and species do not degrade or react with one another thus
conserving mass, an appropriate assumption for many PFAAs, such as
those presented in Table 1 (Hekster et al., 2003). These assumptions
allow for a mass balance calculation using Eq. (1).

Cij ¼ ∑n
k¼1xin f nj þ eij ð1Þ

where Cij is the concentration of the ith species in the jth sample, xin is the
ith species concentration from the nth source, fnj is the contribution from
the nth source to the jth sample and eij is the error term (Hopke, 2016;
Miller et al., 1972; Henry, 2002; Reff et al., 2007).

Unlike other receptormodels (e.g., PMF), UNMIX does not require addi-
tional inputs beyond chemical species and concentrations. UNMIX employs
singular value decomposition to reduce dimensionality of the data space,
normalizes the data, and uses an algorithm to identify “edges” in the data
to distinguish sources (Henry, 2003). To determine the best convergent
model, UNMIX largely relies on the minimum R2 and the minimum signal
to noise ratio (S/N) to determine results (Henry, 2003).

2.6. PMF model

An in-depth explanation of the PMF algorithm can be found in the PMF
5.0 handbook and Reff et al. (Reff et al., 2007; Norris et al., 2014) The algo-
rithm underlying PMF differs greatly fromUNMIX, and criteria for selecting
one over the other in the event that the results disagree can be found in a
review by Henry and Christensen, where they conclude that Unmix is
more appropriate when edges in the data are distinct and PMF functions
better when there are many zeros in the loading and score matrices
(Henry and Christensen, 2010). Like UNMIX, the PMF model is based on
the CMB equation (Eq. 1) (Hopke, 2000). Unlike UNMIX, the number of
sources in a PMF solution are user defined. Thus, the user can test solutions
with a varying number of sources to determine an appropriate number for
optimizing the diagnostic criteria. Another practical difference between
PMF and UNMIX is that PMF includes uncertainty estimates for each data
point. The uncertainty estimates are used in an equation to identify the
value of the parameter Q, a goodness-of-fit parameter:

Q ¼ ∑n
i¼1∑

m
j¼1

eij
σ ij

� �2

ð2Þ

where, σijis the uncertainty of the jth species concentration in sample i, n is
the number of samples, and m is the number of species (Reff et al., 2007).
Three different Q values are generated: Qexpected is equal to (number of
non-weak, a user selected label, data values in the data set (X)) -(numbers
of elements in the factor contributions (G) and factor profiles (F), taken
together), Qtrue is the goodness-of-fit parameter calculated including all
points, and Qrobust is the goodness-of-fit parameter calculated excluding
points not fit by the model, defined as samples for which the uncertainty-
scaled residual is greater than four (Norris et al., 2014). Along with other
criteria (Table 2) these calculation can, in part, be used to choose the best
model. Depending on the data available, various equations may be used
to estimate uncertainties (Reff et al., 2007). Uncertainty = 5/6*LOD is
commonly applied and was used in this analysis (Reff et al., 2007; Henry
and Christensen, 2010).

2.7. PCA-MLR

A comprehensive explanation of the use of PCA-MLR for source appor-
tionment can be found in Thurston and Spengler (1985). The PCA-MLR
model relies on the same underlying principles as the twomodels described
above, however the PCA-MLR model does not rely on the CMB equation
and therefore does not impose any positive constraints on the model. For
4

the PCA, the data were normalized via log-transformation The PCA was
run with varimax rotation and varimax factors with an eigenvalue >1
were used in the analysis as done in previous works on the subject
(Thurston and Spengler, 1985; Hopke, 1982; Pio et al., 1991; Hu et al.,
2018). Following identification of factors, MLR was employed where the
factors identified in the PCA were modelled as independent variables and
the sum of the measured pollutant concentrations was the dependent vari-
able. The regression coefficients from theMLRwere then used to determine
the exposure contribution, in percent, of each source with the following
equation:

i %ð Þ ¼ 100 � Bi
∑n
i Bi

� �
ð5Þ

where Bi is the beta coefficient for a given factor (Thurston and Spengler,
1985).

3. Results and discussion

The overarching goal of this study was to quantify source contributions
of PFAS exposure in human serum in two highly exposed communities and
assess the utility of three different source apportionmentmethods in human
serum across these communities and a broader reference population
(NHANES). UNMIX, PMF and PCA-MLR were run on CO and NC serum
datasets with results shown in Figs. 1, 2 and 3. For the CO and NC cohorts,
the UNMIX and PMF models described three to four major sources, while
the PCA-MLR method characterized two sources. Each cohort contained
at least one distinct source of contamination by these models, but none of
the sources elucidated were similar across the two cohorts. This is expected
due to the overall lack of similarity in likely PFAS exposure source across
these two cohorts. The NHANES analysis did not result in feasible solutions
or solutions that met diagnostic criteria (Table 2) for any of the three
models (results not shown).

3.1. CO cohort: results

For the CO dataset, UNMIX and PMF resulted in similar 3-source
solutions and PCA-MLR resulted in a 2-source solution (Fig. 1a/b).

PFNA, PFHpA and MeFOSAA were excluded from UNMIX due to high
specific variance (variance due to error > 50 %). The final solution had
an overall R2 of 0.87, had aminimum S/N ratio of 3.24 andmet all diagnos-
tic fit criteria as shown in Table 2. Source 1 (CO-UNMIX-1) accounted for
57 % of the total mass and had high loadings of sulfonates including
PFHxS, PFHpS, and U-PFOS. Source 2 (CO-UNMIX-2) accounted for 10 %
of the total mass and had high percent contributions of PFDA and PFUdA.
Source 3 (CO-UNMIX-3) accounted for 33 % of the total mass and had
high percent contribution of PFPeS.

PMF produced a solution after investigation of 2 through 4-source solu-
tions. PFUdA and PFDAwere excluded from the final PMF solution due to a
low R2 for the observed versus predicted estimates. PFNA was flagged as
weak due to a low R2. While the 4-source solution had lower Q parameters,
it displayed a high degree of rotational ambiguity (caused by multiple sim-
ilar solutions being generatedwhen thematrices are rotated) during F-Peak
rotation and had comparable R2 values across species. Therefore, the 3-
source solution was used. This solution had a Qtrue/Qexp of 11.7 and a
QRobust of 4761. More detailed comparisons of how these models compared
can be seen in supplementary table 2. The model was selected using
the diagnostic criteria and resulted in the following sources: Source 1
(CO-PMF-1) with high percent contributions of sulfonates including
PFHxS, PFHpS and U-PFOS, made up 59 % of the total; Source 2 (CO-
PMF-2), with a high percent contribution of PFNA made up 27 % of the
total; and Source 3 (CO-PMF-3), with a high percent contribution of
PFPeS, made up 14 % of the total.

The PCA model was run with all compounds other than PFHpA and
MeFOSAA because inclusion resulted in decreased overall R2 and decreased
percent variance explained. Two eigenvalues ≥1 were found in the PCA,



Fig. 1. A (Left Side) Source compositions for the CO cohort from three different models.
Source 1 is blue, source 2 is orange and source 3 is gray. Each bar shows howmuch of each compoundwas attributed to each source. B (Right Side) Exposure contributions for the
CO from three different models. Source 1 is blue, source 2 is orange and source 3 is gray. The charts represent the amount of total exposure that each source was attributed to.

Fig. 2. Exposure contributions by water district of residence for CO cohort, results
from PMF model. Source 1 is blue, source 2 is orange and source 3 is gray. Each
bar shows how much of total exposure was attributed to each source for each
water district.
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which explained 76%of dataset variation.When absolute principal compo-
nent scores were fit in theMLR, source 1 (CO-PCAMLR-1) contributed 87%
and source 2 (CO-PCAMLR-2) contributed 13% to the total solution identi-
fied by PCA-MLR,with amodel R2 of 0.94. CO-PCAMLR-1 had high percent
contributions from the sulfonates and PFOAwhile CO-PCAMLR-2 had high
percent contributions of PFNA, PFDA and PFUdA.

Following evaluation of source apportionment results for the CO cohort,
PMF results were stratified by participant's water district of residence due to
a clear north to south gradient of PFAS concentrations in the affected area
(Barton et al., 2020; McDonough et al., 2021). PMF has the option to
include a sampling site with data input so that different locations may be
compared. Results indicate decreasing exposure contribution from CO-
PMF-1 by water district with increasing distance from the known AFFF
release site (Fig. 2). On average, CO-PMF-1 (the sulfonate dominated
source) contributed 66 % of the exposure for the serum PFAS in Security
water district participants, (i.e., participants living closest to drinking
water contamination source); Widefield water district participants aver-
aged 53% contribution from CO-PMF-1; and Fountain water district partic-
ipants (furthest from the contamination source) averaged a 48 %
contribution from CO-PMF-1. Average exposure contributions from CO-
PMF-2, the source with high percent contributions from PFNA, ranged



Fig. 3. A (Left Side) Source compositions for the NC cohort from three different models.
Source 1 is navy blue, source 2 is green, source 3 is yellow and source 4 is pink. Each bar shows how much of each compound was attributed to each source.
B (Right Side) Exposure contributions for the NC cohort from three different models.
Source 1 is navy blue, source 2 is green, source 3 is yellow and source 4 is pink. The charts represent the amount of total exposure that each source was attributed to.
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from 24% in Security to 30% inWidefield and Fountain. Average exposure
contributions from CO-PMF-3, the source dominated by PFPeS, ranged
from 9 % in Security to 21 % in Fountain (Fig. 2).

3.2. CO cohort: potential exposure sources

The first exposure source characterized with each modeling approach
(CO-UNMIX-1, CO-PMF-1 and CO-PCAMLR-1) had high percent contribu-
tions of sulfonates, specifically PFHpS, PFHxS, and U-PFOS for CO-
UNMIX-1 and CO-PMF-1. The second source in all models had high percent
contributions of longer chain carboxylates: PFDA and PFUdA for CO-
UNMIX-1, PFNA in CO-PMF-2, and PFNA, PFDA and PFUdA in CO-
PCAMLR-2. CO-UNMIX-3 and CO-PMF-3 had high percent contributions
of PFPeS. PFOS and PFOA were not helpful in distinguishing sources
despite being elevated in CO serum samples. However, PFOS and PFOA
did contribute approximately 80 % of their mass to CO-PCAMLR-1.

Based on what is known about PFAS releases near the CO site, CO-
UNMIX-1, CO-PMF-1 and CO-PCAMLR-1, representing 57 %, 59 % and 87
% relative overall source contribution, respectively, suggests that they are
the AFFF-contaminated drinking water source (Barton et al., 2020;
McDonough et al., 2021). Three important PFASs for this source (AFFF)
across models were PFHpS, PFHxS and U-PFOS which were detected in raw
drinking water samples taken in 2018 as part of the CO study (McDonough
et al., 2021). Further, PFHpS and PFHxS are likely derived from AFFF, and
have been found at high concentrations at other AFFF release sites
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(Anderson et al., 2016; Backe et al., 2013). PFHxS has been found at elevated
concentrations in the serum of firefighters exposed to AFFF (Rotander et al.,
2015) and both PFHxS and PFHpS have been found in the serum of residents
exposed to AFFF-contaminated drinking water, and in the associated raw
water samples, in a Swedish community near a military installation (Xu
et al., 2021; Li et al., 2018). While previous research from the CO site is the
first to our knowledge to report U-PFOS in human serum (McCord et al.,
2018), others have detected U-PFOS in AFFF-contaminated water and prod-
ucts as well as in the serum of mice dosed with AFFF (McDonough et al.,
2021; McDonough et al., 2020; Barzen-Hanson et al., 2017).

The supposition that CO-PMF-1 may be identifying the AFFF-
contaminated drinking water is further supported by the results of the strati-
fied PMF analysis (Fig. 2). When stratifying bywater district of residence, the
exposure contribution by CO-PMF-1 decreases monotonically moving from
the northernmost water district closest to the known AFFF source (Security)
to the water district furthest from the known AFFF source (Fountain). This
is consistent with the Barton et al. 2019 findings that water district of resi-
dence was a primary predictor of PFAS serum concentrations and
McDonough et al. 2021 results showing that untreated water concentrations
varied by water district in the same pattern (McDonough et al., 2021).

The second source described by all threemodels (i.e., CO-UNMIX-2, CO-
PMF-2, and CO-PCAMLR-2), with exposure contributions of 10 %, 27 %
and 13 %, respectively, had high percent contributions of the longer
chain carboxylates, including PFNA, PFDA, and PFUdA. This source is not
likely to be associated with drinking water, as these PFASs were either
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not detected at all or were detected only at very low concentrations in the
CO untreated water samples and concentrations did not vary significantly
by water district (McDonough et al., 2021). Further, though only PFNA
was included in the Barton et al. analyses, it was not associated with any
drinking water-related variables, like many of the other PFASs (Barton
et al., 2020). Based on market basket studies (i.e., where representative
diets are characterized and daily intakes of contaminants or nutrients are
estimated (Egan, n.d.)) conducted in several countries, it is plausible that
this source should be attributed to diet (Domingo and Nadal, 2017). Long
chain perfluorocarboxylates, such as those identified here, are more likely
to accumulate in seafood (Dassuncao et al., 2018; Wang et al., 2019) and
dairy products (Macheka et al., 2021) compared to shorter chain PFASs.

A third source characterized by the UNMIX and PMF models (i.e., CO-
UNMIX-3 and CO-PMF-3) had relative contributions of 33 % and 14 %,
respectively, and high percent contributions of PFPeS. Two potential candi-
dates for this source are: 1) an AFFF-contaminated drinking water source,
or 2) an outside exposure, such as consumer product exposure. It is difficult
to assign this factor to a specific source as there is very limited literature on
the use of PFPeS and it is not routinely measured in human serum. The
Australian Department of Health found that PFPeS has been used in
electroplating, antireflective coatings, carpet treatments, and is present in
AFFF (Susmann et al., 2019). However, none of the sources the report cites
specifically tested for PFPeS, rather they tested for PFHpS and PFHxS that
are structurally similar but not identical. It is possible that PFPeS is related
to the AFFF-contaminated drinking water given PFPeS was found in
untreated drinking water samples at the CO Site (McDonough et al., 2021)
as well as in the blood of residents exposed to AFFF-contaminated water in
Sweden (Xu et al., 2020). Further, the PCA-MLR analysis only separated out
two sources, with 100 % of PFPeS allocated to CO-PCAMLR-1 with the
other sulfonates known to be derived from AFFF.

One potential issue with this interpretation is the lack of an expected
trend for PFPeS (i.e., CO-PMF-3) in the stratified analysis (Fig. 2). Further,
as presented in McDonough et al. 2021, in a second year of sampling at the
CO site in a subset of the year one participants (N = 53 in year 2 [2019];
N = 213 in year 1 [2018]) there was no significant decline in PFPeS
serum concentrations (McDonough et al., 2021). Over this one-year period,
which took place after the water systems had mitigated the AFFF-
contamination, other PFASs present in the contaminated drinking water
(i.e., PFHxS, PFOS, PFOA, PFHpS and UPFOS) did decline significantly
(p < 0.05). Given PFPeS is estimated to have a shorter elimination half-
life than the other PFASs listed above, it follows that if drinking water
was the primary source of PFPeS exposure and the drinkingwater exposure
was remediated prior to the blood testing in 2018, a significant decline in
serum concentrations would be expected (Xu et al., 2020). In fact, of
53 CO study participants, 16 (30 %) saw an increase in PFPeS from 2018
to 2019, with an average percent decline of only 11 % (Zhang et al.,
2019). This, coupled with the fact that both CO-UNMIX-3 and CO-PMF-3
were similarly influenced by PFPeS, suggests that an additional source of
PFPeS related to consumer product use may be present. In 2003, 3 M
began using perfluorobutane sulfonic acid (PFBS) as a substitute for PFOS
in their Scotchgard formulation which could result in PFPeS impurities in
this newermixture (AECOM, 2019). Indeed, in a 2020 exposure assessment
conducted at a Michigan site contaminated by leachate from a landfill
consisting of tannery waste contaminated with PFAS-containing
Scotchgard, PFPeS was found in the serum of 86 % of participants
(MDHHS, 2020). This finding is supportive of the hypothesis that the
third source produced by UNMIX and PMF may be linked to a consumer
product exposure source.

3.3. NC cohort: results

Results from the NC cohort are presented in Fig. 3. UNMIX and PMF
both identified four-source solutions and PCA-MLR identified a two-
source solution.

The UNMIX solution included all compounds. While excluding PFOA
created a slightly better model solution based on a minimum S/N of 5.03,
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it was included in the model due to its importance as a contaminant in
the NC cohort; PFOA serum concentrations in Wilmington were signifi-
cantly higher than the national average (Control, 2019). This solution had
a minimum R2 value of 0.92, a minimum S/N of 2.47, and met all diagnos-
tic criteria (Table 2). Source 1 (NC-UNMIX-1) accounted for 3% of the total
mass and contained a majority of PFHpA. Source 2 (NC-UNMIX-2)
accounted for 48 % of the total mass and contained the highest loadings
of PFOS and PFNA, as well as high percentages of PFHxS and PFOA. Source
3 (NC-UNMIX-3) accounted for 22% of the total mass and contained a high
percentage of PFO4DA. Source 4 (NC-UNMIX-4) made up 28 % of the total
mass and consisted of the highest levels of Nafion byproduct 2, PFO5DoA,
PFHxS, and PFOA.

For the PMF analysis, multiple models with two to six sources were fit.
PFHpA was flagged as weak due to a low S/N. The model with the highest
Qrobust contained all compounds. The chosen model had the lowest Qtrue/
Qexp (4.24), a relatively low QRobust (3478)), no rotational ambiguity and
met all selection criteria in Table 2. More detailed comparisons of how
these models compared can be seen in supplementary table 2. This model
included all PFASs that were measured in ≥50 % of the participants.
Source 1 (NC-PMF-1) made up 17 % of the mass and contained high load-
ings of PFHpA and PFO4DA. Source 2 (NC-PMF-2) made up 36 % of the
total mass and contained high loading of PFOS and PFNA. Source 3 (NC-
PMF-3) was 22 % of the total mass and contained the highest loadings of
Nafion byproduct 2 and PFO5DoA. Source 4 (NC-PMF-4) was 25 % of the
total and had high contributions of PFHxS and PFOA.

The PCA-MLR analysis was initially run with all chemicals. Because
PCA-MLR does not have a way to control for negative concentration esti-
mates, compounds with the most negative concentrations in each source
were removed, until a solution that did not contain negative values was
found. There were two eigenvalues greater than one and the final solution
explained 86 % of the variance. The MLR had an R2 of 0.95. The final solu-
tion contained two sources and did not include PFO5DoA and Nafion
byproduct 2. Source 1 (NC-PCAMLR-1) comprised 34 % of the total mass
and had the most PFHpA and PFO4DA. Source 2 (NC-PCAMLR-2) contrib-
uted 66 % of the total mass and had a majority of the PFHxS, PFNA,
PFOA, and PFOS.

3.4. NC cohort: potential exposure sources

Several exposure sources (NC-UNMIX-3,4; NC-PMF-1,3; NC-PCAMLR-
1) contained high percent-contributions of novel fluoroethers, specifically
PFO4DA for NC-UNMIX-3 and NC-PMF-1, and Nafion byproduct 2 and
PFO5DoA for NC-UNMIX-4 and NC-PMF-3. The model results also all
share sources that contain high percentages of PFAAs (NC-UNMIX-1,2;
NC-PMF-2,4; NC-PCAMLR-2), specifically PFHpA for NC-UNMIX-1; PFNA
and PFOS for NC-UNMIX-2; and PFOA, and PFHxS for NC-PMF-4.

Based on what is known about the NC cohort, NC-UNMIX-3,4; NC-PMF-
1,3; NC-PCAMLR-1, representing 22% and 28%, 17% and 22%, and 34%
exposure contribution, respectively, likely represent contributions from the
Fayetteville Works Facility (Kotlarz et al., 2020; McCord and Strynar, 2019;
Hopkins et al., 2018). This is consistent with the knowledge that Fayette-
ville Works is the only known source of the novel fluoroethers in the area
(Kotlarz et al., 2020; McCord and Strynar, 2019; Hopkins et al., 2018). A
high percentage of PFHpA–a PFAA –is also present in NC-PMF-1 and NC-
PCAMLR-1. PFHpA was the dominant legacy PFAA measured in a 2006
wastewater discharge sample from Fayetteville Works (before methods
for fluoroethers existed), and it was the second-most prevalent PFAA
contributed by Fayetteville Works to the Cape Fear River based on samples
collected in 2014 upstream and downstreamof the facility (Sun et al., 2016;
Strynar et al., 2015; Nakayama et al., 2007).

NC-UNMIX-1,2; NC-PMF-2,4; and NC-PCAMLR-2, representing 3% and
48%, 36%and 25%, and 66%exposure contribution, respectively, all rep-
resent contributions from PFAAs. These PFAAs have been identified in the
Cape Fear River and as contaminants of New Hanover County drinking
water (Kotlarz et al., 2020; McCord and Strynar, 2019; Zhang et al., 2019;
Wagner and Buckland, 2017). These model sources represent unidentified
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drinking water sources of PFAAs that may be separated spatially or tempo-
rally from the exposures stemming from Fayetteville Works. PFAAs have
been identified upstream of the Fayetteville Works facility, and analyses
over time show these shifting from longer to shorter chain PFASs
(Sun et al., 2016; Strynar et al., 2015; Nakayama et al., 2007).

PFHxS and PFNAwere spread evenly across multiple exposure sources–
NC-UNMIX-2,4 and NC-PMF-2,3,4–respectively. PFHxS had the lowest R2

in the UNMIX results (0.72) which indicates a larger problem in themodel's
ability to characterize PFHxS exposure. PFNA, while primarily apportioned
into NC-PMF-2,3,4, only contributed a small percentage to those sources–
6 %, 5 %, and 6 % respectively–and the total contamination. PFNA is
known to be present in food (such as fish) as discussed earlier (Domingo
and Nadal, 2017; Dassuncao et al., 2018; Wang et al., 2019; Macheka
et al., 2021; Susmann et al., 2019), and these models may have trouble
disentangling background sources of contamination (i.e. sources that are
not specific to those in highly exposed communities, such as non-local
diet, that many people are likely exposed to at low levels), as evidenced
by the lack of convergent results from the NHANES data. While Colorado
has a very distinct and strong contamination source in the drinking water
(AFFF), North Carolina may have multiple sources of water contamination,
including several industrial wastewater discharges, AFFF, and runoff from
fields, to which impacted biosolids are land-applied. Therefore, it is easier
to determine potential additional sources beyond drinking water in the
Colorado cohort.

3.5. Strengths

The major strength of this analysis is that all three receptor models
found feasible solutions for PFAS sources in serum from two unique
PFAS-exposed populations, the CO and NC cohorts, both of which have
relatively small sample sizes (n< 350). Further, UNMIX and PMF produced
fairly similar results within each cohort improving confidence in conclu-
sions. The sources that were ascertained in each cohort are supported by
the known contamination in each community and are corroborated by
samples taken by other researchers of the contaminated water sources
(Kotlarz et al., 2020; McCord and Strynar, 2019; Hopkins et al., 2018;
Sun et al., 2016; Strynar et al., 2015; Nakayama et al., 2007).

This analysis allows for a more refined understanding than simple eval-
uation of inter-PFAS correlations. Because these models rely in part on the
correlation between the concentrations of the chemicals, we explored how
the receptor models improved on the interpretation of a Spearman's corre-
lation (Supplemental Figs. 2–4). Spearman's correlations indicate general
groupings of PFASs, but do not estimate the magnitude of individual or
multiple PFAS contributions to potential sources. For example, in the CO
dataset, it would be difficult to discern from Spearman's correlations any-
thing beyond the already suspected fact that many of the sulfonates are as-
sociated with a common source. The analysis does not give an indication
that PFPeS may be behaving differently or the degree to which PFOS and
PFOA may be contributing to other sources beyond AFFF-contaminated
drinking water. These results provide confidence that these models could
be used in the future to help investigate sources of exposure using biological
as well as environmental samples.

3.6. Limitations

Along with the strengths defined above these models also have limita-
tions. Though successful at determining solutions in the COandNC cohorts,
the models did not result in informative or feasible solutions with a larger
sample size (n = 1993) in the NHANES 2015 to 2016 dataset. The CO
and NC datasets both included larger arrays of PFASs (11 and 8, respec-
tively) than the NHANES dataset with only 5 PFASs. In this case, these
receptor models may be limited by the number of chemicals, and they
may only be effective for populations in specific regions that are highly
exposed to distinct (and common) exposure sources, which the NHANES
cohort were not (supplementary fig. 1). This was tested by running these
models with the same 5 PFASs using the samples from the CO and NC
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cohorts. These tests did not return feasible or informative results and resem-
bled the results from the NHANES data (supplementary data 1). Because
these models rely on the separation of compounds using different algo-
rithms, a larger number of compounds may help in clustering the samples
into different sources. This is especially true for UNMIX, which identifies
sources by finding “edges”wherein a compound is not present in a specific
source. Including more compounds increases the opportunities for edges in
the model to arise.

In addition, the models had trouble effectively partitioning compounds
that result frommany exposure sources (such as PFOA and PFOS). Although
PFOA was found in higher concentrations compared to the general popula-
tion for both CO andNC (Supplemental Fig. 1), it likely originates from sev-
eral sources. PFOA has been used in a variety of products for many years,
making it difficult to identify its sources, especially in comparison to the
novel fluoroethers observed in NC and the sulfonates associated with
AFFF in CO.

Aminor limitationworth noting is that in both cohorts, PCA-MLR found
fewer sources than the other twomodels. Other studies that evaluated these
three receptor methods have found that PCA-MLR is not always able to dis-
entangle asmany sources as the other twomethods andmay not be as effec-
tive at pulling out correlated sources (Qi et al., 2017; Qi et al., 2016; Zhang
et al., 2012). This may be due to the lack of negative constraints, diagnostic
criteria for model improvement, and/or bootstrapping. Conversely, UNMIX
and PMF appear to be very sensitive to exposure contributions and may
separate single sources into multiple sources.

It is important to be mindful that these receptor models were designed
for use with environmental media, not a biological matrix like human
serum. A key assumption of these models is that the contaminants do not
degrade or react with one another. In the human body, some PFASs are
excreted more quickly than others, may be absorbed at different rates or
distributed differentially, and these models may not be distinguishing the
exposure sources if toxicokinetic parameters vary drastically across individ-
uals or different groups. These results represent a specific cross-section of
time, which makes accounting for toxicokinetic differences challenging.
To remedy this problem, Hu et al. separated participants by covariates
that could affect toxicokinetics such as sex and age (Hu et al., 2018).
When the participants in our study were separated into three groups–
men, women, and children (North Carolina only)–the resultant models
did not fit the selection criteria, were similar to the full models, or did not
produce feasible results (Supplemental data 1). These results imply that
these models, as is, may be unable to account for toxicokinetic differences
between subpopulations. This could be due to a need for a larger sample
size that makes up for the diminished power when separating the popula-
tion into groups to account demographics that may affect toxicokinetics
such as age and sex. There is also currently no way built into the model to
account for individual toxicokinetic differences (Agency for Toxic
Substances and Disease Registry (ATSDR), 2021; Norris et al., 2007;
Norris et al., 2014). This problem may be ameliorated by modifications to
the models that allow for covariates to account for such differences. The
full models on the other hand produced feasible, interpretable results that
met all selection criteria. This is probably not as major a limitation to this
method as it may seem. The way PFASs, like all compounds, behave in
the environment, as they do in the body, is also governed by a complicated
suite of interacting variables (Agency for Toxic Substances and Disease
Registry (ATSDR), 2021; 5 Environmental Fate and Transport Processes –
PFAS — Per- and Polyfluoroalkyl Substances, n.d.). The fate and transport
of a compound after leaving a source can be affected by physical and chem-
ical properties of the molecule itself, soil types, precipitation, etc. (US EPA,
n.d.-b) Thesemethods are agnostic to any variable thatmight affect the fate
of a compound, whether it is in the environment or in the human body.

3.7. Implications and future research

The source apportionment models evaluated performed better in areas
with distinct exposure sources and may not be useful in examining broader
trends in the U.S. population. This is likely due to higher measured
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concentrations and/or greater relative variation between PFASs in highly
exposed populations. For the CO and NC cohorts, neither UNMIX nor
PMF separated PFOA into separate sources effectively, possibly because
PFOA exposure originates from multiple relatively small and/or overlap-
ping sources.

This work found that UNMIX and PMFwere able to extract three to four
potential sources of PFAS exposure for both cohorts, while the PCA-MLR
method identified two sources for each cohort. While PCA-MLR appeared
to perform adequately, UNMIX and PMFwere more successful at character-
izing specific source groups in communities exposed to high concentrations
of PFASs originating from specific contamination events. All three methods
were unsuccessful in identifying specific exposure sourceswhen themodels
were run with a dataset expected to be representative of background PFAS
exposures in the U.S. (NHANES).

Though these three models can provide an idea of potential sources of
PFAS exposure, they are limited in that they require educated judgment
based on existing knowledge to identify sources. A potential preferred
method of PFAS source apportionment would be CMB, however, for
PFASs, CMB would require regionally specific source profiles for drinking
water, dust, indoor air, diet, and consumer products. The collection and
analysis of such samples would be time and resource intensive, and is
often not feasible, especially in situations where investigators arrive after
the exposure has taken place and the profiles may have changed since the
initial exposure.

The results of UNMIX and PMF in both cohortswere similar enough that
it was concluded that both models worked equally well. While UNMIX and
PMF produce similar results, another consideration is usability. UNMIX's
reduced requirement for user input leads to results that are easier for
decision-makers to interpret.While UNMIX requires less user input,making
itmore usable and easier to interpret, it provides less control over themodel
and fewer ways to validate each iteration of the model than PMF. PMF
contains a similar but much more robust method to compare different
parameters in each model (including bootstrapping and rotation of these
models) that is not present in UNMIX, while also letting you select the
number of sources and select which species are weighted less in the
model without removing them. This makes PMF more broadly useful and
more adjustable to each specific situation. Overall, these models are proba-
bly most useful if used in tandem, as differences may reveal information
about the exposure that would not be ascertained when using either sepa-
rately. A more in depth look at the differences between these models can
be found in Table 2, in their respective manuals, and across several publica-
tions (Hopke, 2016; Henry, 2002; Paatero and Tapper, 1994; Henry, 2003;
Norris et al., 2007; Norris et al., 2014; Hopke, 2000).

Given the long half-life of many PFAAs (Li et al., 2018; U.S.
Environmental Protection Agency, n.d.) and the relative lack of transforma-
tion or metabolism of PFAAs in the human body, these methods should be
considered viable options for source apportionment of serum PFASs in pop-
ulations that are not exposed to significant amounts of metabolically labile
precursors. For PFASs with longer half-lives, serum concentration may be
thought of as an integratedmeasure of exposure that represents both histor-
ical and current exposure, thus these methods may be able to disentangle
past sources. It is important to keep in mind that PFASs that are quickly
eliminated from the body (e.g., a short-chain PFAS like PFBS) often are
not present in serum samples andwould be excluded from source character-
ization. For these homologues, it is worth considering using urine and
environmental media in parallel to serum for evaluation of other potential
sources of PFAS exposure (Fuji et al., 2015; Olsen et al., 2009).

This work provides insight into the utility of applying models designed
for environmental media for source apportionment of human serum. The
approach could be applied in many epidemiological studies where data
on environmental sources is lacking but biological samples are available.
Understanding PFAS exposure contributions and how source contributions
vary based on the specific exposure scenarios and profiles is essential to
develop policies that are appropriately protective of public health, inform
toxicity testing by identifying mixtures to test, and guide mitigation efforts
by identifying the largest and most common contamination sources.
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USEPA United States Environmental Protection Agency
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