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Abstract
The US Environmental Protection Agency’s ToxCast program has generated toxicity data for thousands of chemicals but 
does not adequately assess potential neurotoxicity. Networks of neurons grown on microelectrode arrays (MEAs) offer an 
efficient approach to screen compounds for neuroactivity and distinguish between compound effects on firing, bursting, and 
connectivity patterns. Previously, single concentrations of the ToxCast Phase II library were screened for effects on mean 
firing rate (MFR) in rat primary cortical networks. Here, we expand this approach by retesting 384 of those compounds 
(including 222 active in the previous screen) in concentration–response across 43 network activity parameters to evaluate 
neural network function. Using hierarchical clustering and machine learning methods on the full suite of chemical-parameter 
response data, we identified 15 network activity parameters crucial in characterizing activity of 237 compounds that were 
response actives (“hits”). Recognized neurotoxic compounds in this network function assay were often more potent compared 
to other ToxCast assays. Of these chemical-parameter responses, we identified three k-means clusters of chemical-parameter 
activity (i.e., multivariate MEA response patterns). Next, we evaluated the MEA clusters for enrichment of chemical features 
using a subset of ToxPrint chemotypes, revealing chemical structural features that distinguished the MEA clusters. Finally, 
we assessed distribution of neurotoxicants with known pharmacology within the clusters and found that compounds seg-
regated differentially. Collectively, these results demonstrate that multivariate MEA activity patterns can efficiently screen 
for diverse chemical activities relevant to neurotoxicity, and that response patterns may have predictive value related to 
chemical structural features.
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Introduction

It is now well-established that humans are exposed to far 
more compounds than can be evaluated for hazard poten-
tial using animal-based approaches. Because the need for 
information regarding the potential toxicity of thousands of 
compounds exists, significant efforts have been applied to 
characterize biological activity of environmentally relevant 
compounds using in vitro assays. Combined with informa-
tion on chemical structure, exposure and metabolism, this 
approach can be useful for prioritizing chemicals for further 
testing or for screening-level risk decisions. The US Envi-
ronmental Protection Agency’s Toxicity Forecaster (Tox-
Cast) program (Dix et al. 2007; Judson et al. 2010; Kavlock 
et al. 2012; Richard et al. 2016) provides hazard, exposure, 
structure, and other information on thousands of compounds. 
A major component of the ToxCast program is data from 
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over 1000 in vitro assay endpoints that examine a wide range 
of cellular responses mapped to ~ 300 signaling pathways 
[https ://www.epa.gov/chemi cal-resea rch/toxic ity-forec aster 
-toxca sttm-data]. Currently, over 3800 unique compounds 
have or are undergoing screening in some or all of these 
assays, with the most complete assay coverage, to date, 
available for ~ 1100 compounds tested in the earliest Phases 
I and II of the program. Compound categories represented 
within this ~ 1100 chemical portion of the Phase II test set 
(i.e., the ph1_v2 and ph2 subsets) include pesticides, phar-
maceuticals, antimicrobials, flame retardants, food-additives, 
and “green” chemicals, among others (Richard et al. 2016).

Nervous system function is sensitive to disruption by a 
wide variety of natural toxins, pharmaceuticals, pesticides 
and industrial chemicals. Therefore, it is important that 
screening approaches include assays that identify com-
pounds with potential neurotoxicity hazard. The ToxCast 
assay battery includes assays that evaluate interactions 
of compounds with ion channels and second messengers, 
membrane bound, and/or nuclear receptors, as well as other 
potential targets that may mediate neurotoxicity. However, 
these assays do not capture the breadth of potential targets 
that may be linked to neurotoxicity, nor does interaction of a 
chemical at the receptor level necessarily result in neuroac-
tivity/neurotoxicity. Thus, incorporation of functional, cell-
based assays into screening approaches such as the ToxCast 
program can provide additional information that is useful for 
decision-making. Previously, we demonstrated that assess-
ment of compound effects on neural network function using 
microelectrode arrays (MEAs) can identify neurotoxic and 
neuroactive compounds with high sensitivity and selectivity 
(McConnell et al. 2012; Valdivia et al. 2014). Subsequently, 
we used this assay to screen ToxCast PhII compounds at a 
single concentration (Strickland et al. 2018).

Primary cortical cultures grown on multi-well MEAs 
(mwMEAs) exhibit spontaneous electrical spikes and groups 
of spikes (bursts) that are associated with neuronal action 
potentials (Wheeler and Nam 2011). Further, the activity 
of neurons in these cultures demonstrates synchronous and 
oscillatory activity, which are related to synaptogenesis and 
the balance of excitatory and inhibitory synapses (Muramoto 
et al. 1993; Maeda et al. 1995; Chiappalone et al. 2006). 
These cortical networks are sensitive to modulation by com-
pounds with a wide variety of modes of action (Johnstone 
et al. 2010), including those that modulate voltage-gated 
sodium channels (Meyer et al. 2008; Shafer et al. 2008; 
Scelfo et al. 2012; Mohana Krishnan and Prakhya 2016; 
Baskar and Murthy 2018), and glutamatergic (Frega et al. 
2012; Lantz et al. 2014) and GABAergic (Mack et al. 2014; 
Bradley et al. 2018) agonists and antagonists. In addition, 
MEAs are sensitive to a broad range of chemicals and have 
been used to screen or examine the effects of illicit (Honde-
brink et al. 2016) and antiepileptic drugs (Colombi et al. 

2013), components of harmful algae (Nicolas et al. 2014; 
Alloisio et al. 2016), neuroactive toxins (Pancrazio et al. 
2014; Kasteel and Westerink 2017), and metals (Dingemans 
et al. 2016; Huang et al. 2016). Results with MEAs are also 
reproducible across laboratories (Novellino et al. 2011; 
Vassallo et al. 2017). This work demonstrates that measur-
ing changes in firing rates and patterns of extracellularly-
recorded action potentials from neural networks using MEAs 
is a rapid, cost effective, and accurate approach to screen 
compounds for neurotoxicity hazard.

We previously screened ToxCast compounds (Strickland 
et al. 2018) using cortical networks grown on MEAs and, 
based on testing a single concentration, identified a subset 
of 326 compounds that altered the mean firing rate (MFR) of 
cortical networks. However, this approach does not establish 
potency, nor does it provide hit confirmation. In addition, the 
complex pattern of neural activity measured by MEAs can 
be described by multiple parameters that evaluate different 
aspects of network activity, such as bursting, coordinated 
bursting, synchrony and oscillatory behavior; these param-
eters were not examined in our previous analysis. For small 
numbers (~ 10–50) of chemicals, effects on bursting and 
other network parameters have been used to group or identify 
compounds with similar modes of action (Gramowski et al. 
2004, 2006; Mack et al. 2014; Gramowski-Voß et al. 2015; 
Bader et al. 2017; Bradley et al. 2018). In our previous work, 
we also demonstrated that application of chemotype analysis 
identified chemical sub-structures, or features enriched in 
the hit subset, which provided initial structure–activity rela-
tionship inferences. In the present study, we sought to: (1) 
rescreen a subset of hits from the Strickland et al. 2018 study 
in a concentration–response mode to confirm and further 
characterize the potency of those chemicals while expanding 
the parameters that were evaluated beyond the mean firing 
rate (MFR) to include other parameters of network function; 
(2) utilize machine learning and k-means clustering analysis 
to determine the parameter subset most informative in char-
acterizing neuroactivity and compare these MEA parameter 
potencies to other ToxCast assays; and (3) potentially char-
acterize the active compounds using chemotype enrichment 
analysis and identify putative parameter patterns that may 
define specific modes of action.

Materials and methods

The overall process for our analysis is as follows: 384 com-
pounds were screened in concentration–response across 
43 MEA parameters. These compound–parameter associa-
tions were evaluated using the ToxCast Analysis Pipeline 
(tcpl) to identify active compound–parameter associations 
(Filer 2016; Filer et al. 2017). Of the parameters these com-
pounds were active in, the parameters most informative in 

https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data
https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data
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distinguishing between neuroactive and non-neuroactive 
compounds were identified by reducing the full, 43-param-
eter set using (1) hierarchical clustering, and (2) machine 
learning methods. From the final, reduced set of compound-
parameter associations, we used k-means clustering to char-
acterize bioactivity patterns. Finally, we identified enriched 
chemotypes within these k-means bioactivity clusters.

Chemical selection and preparation

A total of 384 compounds from EPA’s ToxCast chemical 
library were selected for this analysis from the previous, 
single concentration (40 µM) screen of 1055 ToxCast com-
pounds (Strickland et al. 2018). These included 222 com-
pounds that were active in the initial MEA assay that were 
selected for concentration response follow-up testing to 
determine potency, and 162 compounds that did not alter 
spontaneous neural activity beyond the criterion for a “hit” 
[exceeded 2x the activity threshold for DMSO-treated wells 
(see Strickland et al. 2018)] following the initial single-con-
centration screen. A complete list of all compounds screened 
in concentration response can be found in the supplemental 
materials.

Stock solutions of each compound used in the present 
study (made to a target concentration of 20 mM in dime-
thyl sulfoxide, DMSO) were received from EPA’s ToxCast 
Chemical Contractor (Evotec, Branford, CT) in sealed 
round-bottom 96-well plates. Upon arrival, compounds were 
transferred from round-bottom 96-well plates to individual 
micro-centrifuge tubes and stored at − 80 °C until use. Prior 
to each experiment, compounds were thawed, vortexed, and 
immediately diluted in DMSO (5–0.015 mM) in a v-bottom 
96-well plate. Compounds were subsequently diluted 1:10 
in NB/B27 media in a second v-bottom 96-well plate for 
dosing. To dose, 10 µl from the dosing plate was transferred 
to the designated well on the 48-well MEA plate. Each well 
of the mwMEA contained 500 µl of media (1:50 dilution), 
resulting in a final concentration range of 0.03–40 µM for 
each compound, spaced in half-log increments. DMSO 
(0.2% by volume; n = 3 wells/ plate),  GABAA antagonist 
bicuculline (25 µM BIC; n = 2 wells/plate), and Lysis buffer 
solution (~ 4% by volume; n = 1 well/plate) were included 
on each mwMEA as controls to assess concentration-related 
changes in neural function and cell health following com-
pound exposure.

To complete the concentration response determination for 
all 384 compounds from the Phase II library, ~ 6–12 com-
pounds were screened per week in triplicate over ~ 52 weeks.

Primary cortical culture on MEAs

Prior to plating rat primary cortical cultures, multi-well 
microelectrode (mwMEA) plates from Axion Biosystems 

Inc. (Atlanta, GA) were prepared for culture by coating with 
polyethyleneamine as previously described (Valdivia et al. 
2014; Strickland et al. 2018). Each 48-well MEA plate con-
sisted of a total of 768 nano-textured gold platinum micro-
electrodes (~ 40–50 µm diameter, 350 µm center-to-center 
spacing) with 16 electrodes/well plus four integrated ground 
electrodes (M768-KAP Kapton, Axion Biosystems Inc., 
Atlanta, Georgia).

All procedures involving laboratory animals were 
approved by the National Health and Environmental Effects 
Research Laboratory’s institutional laboratory animal health 
care and use committee and complied with applicable fed-
eral guidelines for laboratory animal experimentation. Pri-
mary cortical neural cultures were prepared as previously 
described in Strickland et al. (2018) from Long-Evans rat 
pups on postnatal days 0–1, with minor modifications. Full 
media changes occurred on day in vitro (DIV) 5, 9 and 12, 
or, if the experiment was planned for DIV 13, cells received 
a ½ media change on DIV 12 (24 h prior to experiment).

Multiplexed screening approach

Previous experiments established a multiplexed approach 
that allows for simple and rapid characterization of com-
pound effects on both neurophysiological and cellular viabil-
ity parameters from within the same well of the mwMEA 
plate, allowing for these data to be obtained for each com-
pound from the same network (Wallace et al. 2015). First, 
baseline and treated data are collected for effects of com-
pounds on neurophysiology using MEA recordings. Effects 
on cell health were determined immediately following 
the conclusion of the mwMEA recording in the presence 
of the compound. Cellular viability was determined using 
two commercially available assays: Lactate Dehydrogenase 
(LDH) release and CellTiter Blue (CTB).

MEA recordings

Spontaneous activity in the cortical cultures was recorded 
using an Axion Biosystems Maestro 768 channel amplifier 
and Axion Integrated Studios (AxIS) v1.8 (or later) soft-
ware. The amplifier recorded from all channels simultane-
ously (gain = 1200 ×; sampling rate = 12.5 kHz/channel): 
raw signals were filtered with a Butterworth band-pass filter 
(300–5000 Hz), which filters out slower local field poten-
tials leaving only fast potentials, i.e., “spikes”, arising from 
extracellular currents associated with action potentials (Pine 
2006; Wheeler and Nam 2011). On-line spike detection of 
filtered signals was conducted with the AxIS adaptive spike 
detector, using a threshold of 8 × the root mean squared 
(rms) noise on each channel. Any electrodes with rms noise 
levels greater than 5 µV were grounded (e.g., no data were 
recorded). Once grounded, an electrode was grounded for 
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the duration of the experiment. All recordings were con-
ducted at 37 °C. Wells were deemed usable if on the day 
of the exposure ≥ 10 electrodes were active (defined as ≥ 5 
spikes/min). On DIV 13 or 15, a minimum of three wells 
from one cortical culture preparation were treated with each 
compound (0.03–40 µM). Prior to recording baseline activ-
ity, each mwMEA plate was placed in the Maestro at 37 °C 
and allowed to sit for 20 min while firing rates stabilized. 
Baseline activity (40 min) was recorded before the addition 
of each compound. An additional 40 min of spontaneous 
activity was recorded in the presence of each compound. 
Changes in network parameters relative to baseline were 
assessed following compound treatment.

Cytotoxicity assays

All compounds were examined for cytotoxicity using the 
mwMEA multiplexed approach outlined in Wallace et al 
(2015) with the following modifications. Immediately fol-
lowing the 40 min recording in the presence of compounds, 
50 µl of media was removed from each well and transferred 
to a sterile 96-well plate. This was used to determine LDH 
released from cells during compound exposure using a 
kit from Promega where absorbance was determined in a 
Molecular Devices VersaMax plate reader at 490 nm.

Metabolic activity was determined using the CellTiter 
Blue (CTB) assay (Promega Cat. #8081), following the 
manufacturer’s instructions with the following modifica-
tions. Following the removal of the 50 µl sample for the 
LDH assay, 450 µl of media was removed from each well 
and replaced with 200 µl of fresh media containing a 1:6 
dilution of CTB reagent for the determination of metabolic 
activity. Fluorescence was measured in a Fluorostar Optima 
fluorimeter using an excitation wavelength of 544 nm and an 
emission wavelength of 590 nm.

Data analysis

Raw recordings were re-played and analyzed with the AxIS 
2.3 Neural Statistics Compiler. The Burst Detector Set-
tings used the Inter-Spike Interval Threshold Algorithm 
with a maximum Inter-Spike Interval of 100 ms and had at 
least 5 spikes. Network burst detection was enabled with a 
maximum inter-spike interval of 100 ms, a minimum of 10 
spikes, 25% of the electrodes participating and a Synchrony 
Window of 20 ms. This provided 41 different well-level 
(e.g., averaged across all electrodes in the well) parameters 
of neural network function, each of which represented an 
average activity over the 40 min recording period, to which 
weighted mean firing rate and number of active electrodes 
were added, for a total of 43 parameters. Data for each of 
these parameters were analyzed using the ToxCast Analy-
sis Pipeline (tcpl, version 1.2.2) (Filer et al. 2017), which 

is available publicly as an R package (Filer 2016). Based 
on the low variability in DMSO activity, no transformation 
or normalization was assigned using tcpl. Outliers were 
determined for individual endpoints as follows: sd = stand-
ard deviation, x = (dose − baseline) for each sample, and 
removed if x < mean(x)—6*sd(x) or x > mean(x) + 6*sd(x). 
The responses for assay parameters that indicated a decrease 
or loss of function were multiplied by – 1. The difference 
between each sample response and baseline value was used 
to generate concentration–response curves. A chemical was 
considered active in an assay if at least one median response 
value was greater than three times the baseline median abso-
lute deviation (BMAD), a measure of median response val-
ues for all compounds across the lowest two concentrations 
for that assay that is indicative of baseline variability. The 
curves for each chemical-assay combination were fit with a 
constant model, a constrained Hill model, and a constrained 
gain–loss model, as described in tcpl. The model with the 
lowest Akaike Information Criterion (AIC) value was deter-
mined to be the best fit (Filer et al. 2017). Analyses were 
carried out using R version 3.5.1 (R Core Team 2018). All 
data, R-code and other associated files are available at the 
following DOI (https ://doi.org/10.23719 /15042 94).

Neuroactive and non‑neuroactive chemical 
classifications

A list of neuroactive and non-neuroactive chemicals within 
the set of 384 compounds tested here was developed to serve 
as the “neurotoxicity training set” to classify compounds 
from our chemical set and to aid in identifying the param-
eters most crucial in characterizing neuroactivity. Neuroac-
tive chemicals were identified from the active chemical set 
based on generally well-established activity towards neuro-
transmitter receptors, ion channels or other neurobiological 
targets yielding a list of 41 neuroactive chemicals within 
our chemical set (Table S1). Non-neuroactive chemicals 
were identified for this study by selecting chemicals nega-
tive in this concentration–response screen as well as the 
previous single-point screen (Strickland et al. 2018). This 
chemical list was then evaluated for potential neurotoxic-
ity by searching *chemical name* and *neurotoxicity* in 
PubMed. Chemicals with evidence of neurotoxicity in the 
literature were removed from our list giving a total of 32 
non-neuroactive chemicals (Table S1).

Clustering methods

Complete hierarchical clustering of chemical-parameter 
results was conducted to reduce redundant parameters. This 
was done using a Euclidian distance function weighted to 
account for differences in each chemical-parameter  AC50 
and winning (lowest AIC) model. K-means clustering of 

https://doi.org/10.23719/1504294
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chemical-parameter results to identify similar chemical-
parameter patterns was conducted using JMP version 14.0 
(SAS Institute Inc.). The input data for the potency-driven 
k-means clustering analysis were  AC50 values (in µM) for 
chemical-parameter hits and an assignment of 1 mM for 
non-hits (about 8 times the highest  AC50 value). The input 
data for the direction of activity-driven k-means clustering 
were a binary value distinguishing between increased and 
decreased activity. Validation of k-means clusters was con-
ducted by comparing the percentage of variance explained 
as a function of the number of clusters (the elbow method), 
and using NbClust (version 3.0), an R package that uses 
nearly 30 indices to select the optimal number of clusters 
(Charrad et al. 2014). These k-means clusters were used to 
characterize the chemical-parameter results.

Machine learning methods

WEKA version 3.8.1 (Frank et al. 2016) was used to rank 
parameters with information gain ranking and Pearson’s 
correlation and to perform sequential minimal optimization 
(SMO) Support Vector Machines (SVMs), Artificial Neural 
Networks (ANNs) and Random Forest machine learning 
classification algorithms. These algorithms were used to 
classify neuroactive and non-neuroactive compounds from 
the neurotoxicity training set and select the ranked param-
eters most crucial for classification using the  AC50s from 
the chemical-parameter hits (in µM) as the parameter value. 
Inactive values were set to 1 mM, about eightfold larger than 
the highest  AC50. All classifications were conducted using 
tenfold cross-validation. The percent correct assignment of 
the compounds using these machine learning methods was 
the basis for evaluating classifier performance. A plot of cor-
relations between chemical parameters was developed using 
R/corrplot (version 0.84) (Wei and Simko 2017).

Chemical potency comparisons

For each active chemical in the MEA data set, the  AC50 of 
the most potent MEA parameter was compared to the poten-
cies of all other active (ToxCast hit call = 1) ToxCast and 
Tox21 assays for that chemical. The most-recent, full release 
of the invitrodb_v2 collection of ToxCast and Tox21 assay 
information (October 2015) was obtained from the ToxCast 
website (https ://www.epa.gov/chemi cal-resea rch/toxic ity-
forec aster -toxca sttm-data) (U.S. EPA 2015). Figures were 
generated using R/ggplot2 package (version 3.1.0) (Wick-
ham 2016).

ToxPrint chemotype enrichment analysis

Chemical feature analysis was conducted using the Chem-
otyper application (https ://chemo typer .org/), with the 

latest ToxPrint feature set (V2.0_r711; https ://toxpr int.
org/), developed by Altamira (Altamira, Columbus, OH, 
USA) and Molecular Networks (Molecular Networks, Erlan-
gen, GmbH) under contract from the US Food and Drug 
Administration (FDA) (Yang et al. 2015). The feature set 
contains 66 different categories of substructures (e.g., C#N 
and AlkaneCyclic, which contain nitrile groups and cyclic 
alkanes, respectively), or chemotypes (CTs), with 729 more 
specific chemotypes within them (e.g., C#N contains C#N_
cyano_cyanohydrin; a nitrile group bonded to a CO, and 
C#N_nitrile_generic; indicating any chemical that contains 
a nitrile group). We used the 66 broader, un-nested catego-
ries for analysis. Chemical hits within the potency-driven 
k-means clusters were given structural fingerprints based 
on the presence of a given chemotype within that chemi-
cal’s structure.

Chemotype enrichment was conducted using the hyper-
geometric test. Enrichment was calculated based on the 
proportion of each CT within a k-means cluster relative to 
the proportion of that CT within all k-means clusters. Chem-
otypes were considered significantly enriched if p values 
were < 0.05. Figures were generated using R/ggplot2 pack-
age (version 3.1.0) (Wickham 2016) and R/pheatmap pack-
age (version 1.0.12) (Kolde 2018).

Results

Characterization of chemical potency

Of the 384 chemicals included in the experiment, 375 
chemicals were active on at least one network parameter, 
for a total of 5566 chemical-parameter hits. The LDH assay 
exhibited small BMAD values, resulting in responses for 
many chemicals being greater than the 3*BMAD thresh-
old, even though they did not demonstrate a concentration 
response. This decreased the reliability of this parameter for 
detecting truly cytotoxic compounds and therefore cytotoxic-
ity was characterized using only the CTB assay. Nineteen of 
these chemicals were also active in the CTB assay indicating 
potential cytotoxicity. To avoid counting cytotoxic chemical 
activity as activity in a parameter, the  AC50 values of these 
chemicals in the CTB assay were compared to the  AC50 val-
ues of the chemicals in any other parameter and only those 
chemical-parameter hits with  AC50s less than the chemical-
CTB  AC50 were counted as hits. This reduced the number 
of “active” chemicals from 375 to 374 and the number of 
positive chemical-parameter hits from 5566 to 5423.

https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data
https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data
https://chemotyper.org/
https://toxprint.org/
https://toxprint.org/
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Characterization of the most informative 
parameters

Many of the parameters extracted from the MEA recordings 
in the analysis were highly correlated. To reduce the param-
eter set to the most informative parameters, we conducted 
hierarchical clustering on the 43 parameters with a distance 
function adjusted to include differences between chemical-
parameter  AC50s and winning AIC models. Within these 43 
parameters, 14 pairs clustered together closely and were nar-
rowed down to one parameter within each of these redundant 
pairs (Figure S1). Many of these parameters were variants of 
the other (e.g., “mean firing rate” vs. “weighted mean firing 
rate”) or evaluated the same characteristic using different 
statistics (e.g., “mean” vs. “median ISI within burst”). In 
selecting between the two closest parameters to keep in the 
analysis, preference was given to the parameter that was not 
a variant of the other (e.g., “mean firing rate”) and calcula-
tion of averages over standard deviations (e.g., “average net-
work burst duration”). The “Number of Active Electrodes” 
and “Number of Bursting Electrodes” parameters were both 
excluded due to promiscuity among several chemicals. This 
reduced the number of parameters from 43 to 27 and the 
number of active chemicals from 374 to 323.

To reduce the parameter set further, machine-learning 
methods were employed to rank the remaining 27 param-
eters and identify those most informative in distinguishing 
between neuroactive and non-neuroactive chemicals in the 
neurotoxicity training set. Parameters were ranked using an 

information gain ranking approach and Pearson’s correlation 
approach with WEKA (Table S2). These 27 parameters were 
further narrowed down to the top 20, 15, 10, and 5 param-
eters and used to classify neuroactive and non-neuroactive 
chemicals in the neurotoxicity training set using SVM, ANN, 
and Random Forest machine learning methods with WEKA. 
To determine the best method for classifying active chemi-
cals as hits, this process was repeated three times with the 
neurotoxicity chemical training set included in the machine 
learning process narrowed down to those active in 1 or more 
parameters, 2 or more parameters, or 3 or more parameters.

Across all three machine learning models, requiring a 
minimum of three parameter hits to count a chemical as 
active gave the greatest classification accuracy between 
neuroactive and non-neuroactive chemicals as did reduc-
ing the number of parameters to the top 15. Although the 
order differed slightly, the top 15 parameters were the 
same when ranked using both an information gain rank-
ing approach and Pearson’s correlation. As described in 
Table 1, these parameters cover different general activity, 
bursting, and connectivity measures of neuroactivity. The 
pairwise correlation between these parameters is shown 
in Fig. 1. Between the three machine-learning models, the 
Random Forest model had the highest classification accu-
racy overall. For the Random Forest model, with chemicals 
requiring a minimum of three parameter hits to be counted 
as active, 98.4% of neuroactive versus non-neuroactive 
chemicals in the training set were correctly classified with 
the 15 parameter set, and this dropped to 96.9% with all 27 

Table 1  Top 15 parameters

Definitions are summarized from Axion Biosystems neural metric tool metric definitions (v2.4)

Category Parameter Description/definition

General activity (“Firing”) Mean firing rate (Hz) Total number of spikes over the duration of the analysis
Number of spikes Total number of spikes over the duration of the analysis
Number of bursts Total number of single-electrode bursts over the duration of the 

analysis
Burst structure Burst duration (average) Average time from the first to the last spike in a burst

Interburst interval (average) Average time between the start of bursts
Burst percentage-avg The number of spikes in a burst divided by the total number of bursts, 

times 100
Burst percentage-std Standard deviation of the burst percentage
Number of spikes/burst (avg) Average number of spikes in a burst

Connectivity Network burst percentage The number of spikes in network bursts divided by the total number 
of spikes, times 100

#Spikes/network burst-avg The average number of spikes in a network burst
#Spikes/network burst-std The standard deviation of the number of spikes in a network burst
#Electrodes participating in Burst-avg The average number of electrodes participating in a network burst
Area under cross-correlation Area under the well-wide pooled inter-electrode cross-correlation
Full-width at half-height of cross-correlation Distance along the x-axis from the left half height to the center half 

height of the normalized cross correlogram
Synchrony Index A unit measure of synchrony between 0 and 1
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parameters and 93.8% with the top 5 parameters. Based on 
this high correct classification accuracy, we reduced the 
27 parameters to the top 15 parameters and only counted 
chemicals as active if they were active in at least three of 
these 15 parameters. This reduced the number of chemi-
cals labeled “active” across all chemicals tested from 323 
to 237. If a chemical was active in both the up and down 
direction for a parameter, then the direction with the lower 
AIC was selected. These processes reduced the total num-
ber of chemical-parameter hits from 3112 to 2060. These 
data are summarized in Fig. 2 with more in-depth data 
available in Table S3.

Among the final chemical-parameter data, five times 
more chemical-parameters had decreased activity than 
increased activity. The “burst percentage average” parameter 
was the most promiscuous of our final parameter set with 
193 chemicals active. “Number of spikes” and “mean firing 

rate” were the next two most active parameters with 170 and 
163 chemical hits, respectively. Seven chemicals were active 
in all 15 parameters: cyfluthrin, fluazinam, pyridaben, ema-
mectin benzoate, nitrofen, dichlorodiphenyldichloroethane, 
and PharmaGSID_48509.

Comparison of MEA potencies to ToxCast assays

To characterize the relative potency of the MEA param-
eters to other ToxCast assays, we plotted the  AC50 of the 
most potent MEA parameter for each chemical against the 
 EC50s of active ToxCast assays for that same chemical 
(Fig. 3, SI Fig. 2, Table S4). Of the 1192 assay endpoints 
in the original ToxCast data set, 852 were active in our 
final set of 237 chemicals. Among the known neuroac-
tive compounds included in the chemical training set, 
the MEA parameter was consistently more sensitive than 
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Fig. 1  Parameter correlations of chemical-parameter  AC50s for final 15 MEA parameters
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other ToxCast assays (Fig. 3, SI Fig. 2). Abamectin was 
the most potent chemical with an  AC50 of 4.1 × 10–5 in the 
area under cross-correlation MEA parameter. All 15 of the 
MEA parameters were among the most potent for the full 
chemical-parameter set.

Characterization of chemical activity patterns

The chemical-parameter hits, when clustered, could suggest 
that different clusters reflect different modes of action for 
neurotoxicity (Fig. 2). We used k-means clustering with a 
range of 1–15 clusters to determine the best grouping for 
acute effects on network activity measured with MEAs. 
After validation using both the elbow method and the 
NBClust R package (Charrad et al. 2014), we determined 
that three clusters formed the best grouping for the chemi-
cal activity patterns based on the potency of effects. The 
first cluster (Cluster 1), contained 95 compounds, while 
the second (Cluster 2) and third (Cluster 3) contained 69 
and 72 chemicals, respectively. Closer examination of these 
potency-driven “bioactivity clusters” indicates that com-
pounds in Cluster 1 (Fig. 2) alter nearly all of the 15 net-
work parameters, whereas Cluster 2 compounds, which also 
altered firing parameters, had much more limited actions on 
bursting parameters and actions on connectivity were gener-
ally more limited to synchrony measures. By contrast, Clus-
ter 3 was differentiated from Cluster 2 by an almost complete 

lack of effect on firing parameters, and more robust effects 
on bursting and connectivity parameters, especially connec-
tivity parameters. Further, by considering the directional-
ity of changes within each cluster, sub-clusters of activity 
could be determined. Compounds within these 3 clusters 
were grouped by the chemical-parameter direction of change 
(up versus down) to determine if including this information 
clarified differing patterns of activity among the compounds. 
The results indicated that, within each of the three main 
clusters, up to 5 sub-clusters could be identified based on the 
directionality of the changes in MEA parameters. For exam-
ple, Cluster 2 was divided into three sub-clusters with dif-
ferent firing and bursting parameter activity. Sub-Clusters 1 
and 2 consistently decreased firing and connectivity param-
eter activity, but Sub-Cluster 1 had more bursting parameter 
activity than Sub-Cluster 2. In contrast, Sub-Cluster 3 con-
sistently increased firing, bursting, and connectivity param-
eters. These chemical clusters and sub-clusters are described 
in Table S5. Whereas these sub-clusters further clarified dif-
ferent biological activity patterns within the main clusters, 
the number of chemicals within each sub-cluster was vari-
able. To make direct comparisons between clusters easier, 
only the original set of three potency-driven clusters was 
used for additional analysis.

An analysis of the sub-structural features of each chem-
ical within the three clusters was conducted to identify 
any features that could be contributing to the original, 

Fig. 2  Heatmap of three 
potency-driven activity pat-
terns in k-means clusters 
of chemical-parameter hits. 
Blue = increased activity, 
purple = decreased activity. 
Darker colors = lower chemical 
 AC50s. Sample dose–response 
curves shown for an active and 
inactive chemical-parameter. 
Red lines = log10(AC50), grey 
box = 3*BMAD
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Fig. 3  Comparison of ToxCast assay potencies to most potent MEA 
parameter for each compound. Triangle = log10(AC50) for the most 
potent MEA parameter for each chemical, red = known neuroactive 

compounds (Table  S1), blue = other compounds. Inset figure = com-
pounds with  log10(AC50) ≤ − 1.5. Full figure = Figure S2
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potency-driven chemical clustering pattern. We used 
the ToxPrint CTs broad, un-nested structure categories 
to identify chemical structural fingerprints based on the 
presence of a given CT within that chemical’s structure. 
Of the 237 chemicals within k-means clusters, 51 of the 66 
CTs were represented at least once, and only one chemi-
cal, SSR 103800, a mixture, did not have any assigned 
CTs. The 236 chemicals with corresponding CTs are given 
in Table S6. To determine if structure could explain the 
parameter activity pattern among these potency-driven 
k-means clusters, we calculated enrichment of each chem-
otype within one of the three k-means clusters relative to 

all three clusters. Of the 51 different CT categories ana-
lyzed, 27 were enriched in one of the three clusters (Fig. 4, 
Table S7). Cluster 1, 2, and 3 were enriched for 8, 9, and 
10 different CTs, respectively. No single CT was enriched 
in multiple clusters. In addition to the distinct CT patterns 
within each cluster, particular motifs tended to be enriched 
within the same cluster. For example, ring structures (e.g., 
aromatic and hetero rings) were consistently enriched in 
Cluster 1, whereas sulfur-containing compounds (e.g., 
S–N and S–O) were consistently enriched in Cluster 3. 
The aromatic rings CT enriched in Cluster 1 were pre-
sent in the most chemicals, with 79 chemicals in Cluster 1 

Fig. 4  Barplot describing 
enriched chemotypes within 
three potency-driven k-means 
clusters. Number of CTs within 
all clusters in row label. Darker 
bars = enriched CTs within 
cluster. Inset images depict 
structures within respective CT. 
More complete CT descriptions 
can be found in the chemotyper 
application

CTs per Cluster

C
he

m
ot

yp
es

 w
ith

 T
ot

al
 H

its
 in

 a
ll 

C
lu

st
er

s

Cluster
1
2
3

Enrichment
Enriched
Not Enriched

0 20 40 60 80 0 20 40 60 80
alkaneBranch : 72
alkaneCyclic : 48
alkeneBranch : 8
alkeneCyclic : 25
alkeneLinear : 28

alkyne : 6
aromaticAlkane : 143

aromaticAlkene : 16
bond.C.N : 8

bond.C.O : 109
bond.metal : 6

C..O.N : 56
C..O.O : 47

C..Z..C.Q : 9
C.N_nitrile : 12

C.S : 2
carbohydrate : 3

CC..O.C : 11
chain.alkaneLinear : 101

CN_amine : 57
COC : 73

COH_alcohol : 61
CS : 26

CX_halide : 105
element_metal : 10

ligand : 23
N..C. : 3

N..O. : 66
N.C.O : 2

N.N_azo : 2
NN_hydrazine : 1
NN.N_triazene : 1

NO_amine_hyrdroxyl : 1
oxy.alkaneLinear : 1

OZ_oxide : 5
P..O.N : 1

P.N : 1
P.O : 13

P.S : 9
PC : 1

QQ.Q.O_S : 5
quatN : 2

ring.aromatic : 180
ring.fused : 6

ring.hetero : 103
ring.polycycle : 3

S..O.N : 8
S..O.O : 5

S.N : 15
S.O : 16

X.any : 112

0 20 40 60 80

586ring:aromatic_benzene

chain:alkaneLinear_
propyl_C3

439

chain:alkeneLinear_
diene_1_4-diene

461



479Archives of Toxicology (2020) 94:469–484 

1 3

containing the motif. Compared to the 147 chemicals now 
labeled as inactive, the active chemical set has more aro-
matic structures and carbon chains. Unlike the active set, 
the inactive set contains nucleobase and amino acid CTs 
as well as different nitrogen structures, such as N = [N+] 
(data not shown).

Discussion

The present study provided concentration–response char-
acterization of positives identified by single concentra-
tion screening of 1055 compounds conducted in Strick-
land et al. (2018). Of the 222 compounds that were active 
on the MFR parameter at the highest concentration in the 
previous single concentration screen analysis, 189 com-
pounds (85%) were active in the final chemical set in the 
present multi-concentration–response screening follow-up 
analysis, and 136 were active on the MFR parameter. The 
direction of chemical activity on the MFR parameter for 
these 136 compounds was in agreement for both the pre-
vious single concentration screen and the current multi-
concentration screen, with 135 compounds decreasing 
MFR activity and 1 compound increasing MFR activity. 
In the previous work (Strickland et al. 2018), hit calls were 
based on changes in mean firing rate relative to changes 
caused by DMSO for a single concentration of compound. 
In the current analysis, a “neurotoxicity training set” of 
chemicals that were contained within the original Tox-
Cast test set was used as a benchmark for training and 
validation of the models to determine active compounds 
following exposure to multiple concentrations. This work 
provides  AC50 values for effects of these compounds on 
neural function, a parameter that is not well represented in 
the current panel of ToxCast assays. Further, the present 
work demonstrated that multiple parameters describing 
neural network activity in MEAs provide a more robust 
assessment of chemical neuroactivity than MFR alone, 
as no individual parameter fully predicted the positive or 
negative status of all other parameters in the set, and 15 
parameters best distinguished between active and inactive 
chemicals in our neurotoxicity training set. Finally, the 
present analysis demonstrated that chemical expression 
patterns vary across these 15 parameters and the results 
reveal three patterns of bioactivity that could indicate dis-
tinct chemical mechanisms of action.

The complex spiking, bursting and coordinated activ-
ity of neural networks grown on MEAs can be described 
by over 200 parameters (Gramowski-Voß et  al. 2015; 
Bader et al. 2017). To date, assessment of neuroactivity/
neurotoxicity using MEAs has focused largely on com-
pound actions on mean firing rate (MFR) (Ylä-Outinen 
et al. 2010; Defranchi et al. 2011; McConnell et al. 2012; 

Scelfo et al. 2012; Nicolas et al. 2014; Valdivia et al. 2014; 
Hondebrink et al. 2016) and/or burst rate (Keefer et al. 
2001b, a; Pancrazio et al. 2001). Previous studies have also 
demonstrated that consideration of multiple parameters of 
network activity can provide additional information to help 
characterize the actions of compounds on network activ-
ity and can be used to identify groups of compounds with 
similar modes of action (Gramowski et al. 2004, 2006; 
Gramowski-Voß et al. 2015; Bader et al. 2017; Bradley 
et al. 2018). These groups have used multiple parameters 
of network activity and grouped them into classifications 
such as “general activity”, “burst structure”, “oscillatory 
behavior” (not considered here) and “synchrony” (simi-
lar to “connectivity”) to examine functional relationships 
between smaller sets of compounds (Gramowski et al. 
2004, 2006; Gramowski-Voß et  al. 2015; Bader et  al. 
2017). Interestingly, in these cases, the authors selected a 
set of ~ 12 parameters to use for characterization of com-
pound effects. However, these previous studies generally 
examined small sets of compounds with a limited chemi-
cal space, and the methods/rationale for selecting param-
eters were not clearly stated. Thus, the extent to which 
this approach could be applied to a set of compounds with 
diverse structures is unknown. The present study examined 
a set of 384 compounds drawn from a more diverse chemi-
cal space to consider the information provided by what 
initially was a set of 43 parameters of network function. 
Using unsupervised analysis approaches, this was reduced 
to a set of 15 parameters that separated neuroactive from 
non-neuroactive compounds in a neurotoxicity training 
set with high accuracy. Interestingly, although functional 
domains represented by these parameters were not a con-
sideration in the selection of the final 15 parameters used 
here, this final set reflects 3 major domains of network 
activity (overall activity rate, bursting structure, and con-
nectivity), as outlined in Table 1, Fig. 2, and Table S3. 
That these domains of activity emerged without a priori 
selection indicates that effects on firing, bursting and net-
work activity in vitro are indeed important in describing 
how different compounds disrupt neural network activity 
following acute exposure. Interestingly, our results identi-
fying these functional domains as important are consistent 
with the studies mentioned above, despite our unbiased 
approach using a neuroactive training set of compounds 
compared to the unknown methods utilized in the other 
studies.

The present results indicated that the actions of com-
pounds on network activity could be described by three dif-
ferent patterns of bioactivity. By examining the chemotypes 
enriched within each chemical cluster, we found that chemi-
cal structure can help explain the pattern of neuroactivity in 
our chemical-parameter results. Different chemotypes were 
enriched in different clusters, demonstrating the importance 
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of chemical structure in influencing different patterns of 
bioactivity, which could in turn be surrogates for different 
mechanisms of activity. Further, several examples illustrate 
how chemical structure and biological activity are inter-
related and influence how network activity is affected by 
different chemical classes. Triazole fungicides were grouped 
in Cluster 1 (flusilazole, hexaconazole, propiconazole, 
difenoconazole) and Cluster 2 (tebuconazole, paclobutra-
zole), whereas the strobulirun fungicides were all found in 
Cluster 1. Pyrethroid insecticides were distributed among 
Clusters 1 and 3 whereas organochlorine insecticides that act 
on  GABAA receptors were distributed more evenly across 
all three clusters. Further, the sub-clustering with respect to 
the direction of chemical-parameter activity improved the 
separation of these compounds within the potency-driven 
clusters. For example, the triazole fungicides in Cluster 2 
were in Sub-Cluster 3, whereas the  GABAA agonists and 
antagonists in Cluster 2 were in Sub-Clusters 1 and 2. The 
 GABAA compounds in Cluster 1 were in a different sub-
cluster than the pyrethroids in Cluster 1. In general, segre-
gation of compounds into different clusters and sub-clusters 
may in part reflect differences in mechanisms of action. For 
example, the triazole fungicides may interfere with voltage-
gated calcium (Heusinkveld et al. 2013) and potassium chan-
nel (Sung et al. 2012) function, while pyrethroids modify 
kinetics of voltage-gated sodium channel function (Nara-
hashi 2002). This demonstrates the utility of this assay to 
assess and distinguish different neuroactivity patterns for 
compounds with varied effects on neural network function. 
While certain compound classes tended to group into these 
different neuroactivity patterns, the neuroactivity patterns 
did not consist of entire compound classes. Two factors may 
contribute to this. First the promiscuity of many of the com-
pounds in this chemical set towards multiple targets likely 
invokes different patterns of response; these promiscuous 
actions likely increase as concentrations of compounds 
increase. Second, beyond a few categories of compounds 
(pyrethroids, triazoles, organochlorines), most compound 
classes had five or fewer representative members in the cur-
rent test set. Both of these issues make it hard to distinguish 
truly unique patterns of response based on chemical class.

These results, demonstrating that evaluation of multiple 
neural network parameters in conjunction with consideration 
of chemical structure results in predictable outcomes within 
the neuroactive space, are important from the standpoint of 
evaluating unknown compounds. The relationship between 
structure and function will provide increased confidence that 
compounds for which toxicological information is lacking 
may have relevant effects if they have network parameter 
activity and structural profiles similar to known neuroactive 
compounds that have been more thoroughly characterized. 
Further, these different structure/activity inferences repre-
sent different chemical classes, providing an approach to 

predict neuroactivity for different chemical exposures. This 
information will be useful in the context of prioritization for 
additional screening/testing and for designing more focused 
follow-up studies.

We previously demonstrated enrichment of certain 
chemotypes among the active compounds (compared to 
inactive compounds) in the single concentration screen 
(Strickland et al. 2018). The approach taken here differs 
from the previous approach in two important respects. 
First, we used the 66 broad chemotype classifications 
rather than the specific chemotypes used in Strickland et al. 
(2018). For example, the enriched "chain:aromaticAlkane_
Ph-C1-Ph" and "chain:aromaticAlkane_Ph-C6" which 
were enriched in Strickland et al. (2018) would both be 
part of the "aromaticAlkane" classification for chemotypes 
in the present data set. Second, we also calculated enrich-
ment from one cluster to the next (meaning we were relat-
ing active compounds to each other) rather than relating 
actives to inactives as was done in the single-point screen. 
Although direct comparisons between the enrichment 
of chemotypes in the two studies are therefore difficult, 
there were examples of consistency across the two studies. 
For example, of the overlapping chemicals between the 
single-point screen (Strickland et al. 2018) and the pre-
sent analysis, 4/5 "ring:hetero_[5]_N_pyrazole" and 2/4 
"ring:hetero_[5]_O_dioxolane_(1_3-)" chemicals were in 
the "ring:hetero" enriched cluster. A comparison of chem-
otype enrichment in the active vs inactive compounds in 
the present data set will be conducted in the future.

These data have other uses as well. By identifying those 
compounds with more potent  AC50 values in the MEA assay 
than in other ToxCast assays, potential neurotoxicity could 
be identified as an endpoint of concern, particularly when 
compared to assays that do not measure endpoints of rel-
evance to the nervous system. Additionally, by comparing 
activity for these compounds in other ToxCast assays to 
activity in the MEA assay, the relationship between neuro-
activity and broader biological activity can be elucidated. 
We found that, for the majority of known neuroactive com-
pounds in the chemical training set, the MEA parameters 
were more sensitive than or had potencies similar to other 
ToxCast assays. This was also the case with other active 
compounds in our data set with unknown neuroactivity. For 
example, 4-nonylphenol, a common environmental contami-
nant, has an MEA  AC50 similar to known neuroactive com-
pounds like rotenone and phosalone, and the MEA param-
eter  AC50 was more sensitive than other ToxCast assays. 
While this compound’s neuroactive potential is not well-
understood, there are other indications that 4-nonylphenol 
can impact nervous system function. For example, 4-nonyl-
phenol has been found to inhibit acetylcholinesterase activity 
across organisms (Li 2008a, b; Vidal-Liñán et al. 2015), and 
to augment neurotoxic behavioral effects with co-exposure 
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to diazinon in Daphnia (Zein et al. 2015). Other endocrine-
disrupting chemicals have been implicated in neurological 
disorders (Kajta and Wójtowicz 2013; Cano-Nicolau et al. 
2016), and, while the mechanism(s) of 4-nonylphenol’e 
effects on network activity have yet to be elucidated, our 
analysis highlights the potential for 4-nonylphenol to also 
affect neuroactivity.

Within the ToxCast assay suite are assays that measure 
interactions of compounds with ion channels, G-protein and 
membrane-bound receptors that are of relevance to nerv-
ous system function. Comparing the results of the present 
study to those assays could serve to help develop putative 
adverse outcome pathways (AOPs) related to neurotoxic-
ity. Whereas many different mechanisms of neurotoxicity 
are well-established in the literature, few well-documented 
AOPs for neurotoxicity have been described to date (Gong 
et al. 2015; Bal-Price et al. 2015, 2017; Sachana et al. 2018; 
Li et al. 2019). These data therefore can serve as a resource 
to either strengthen existing AOPs or support the develop-
ment of new ones.

While the data and analysis presented here have a number 
of different uses for neurotoxicity screening, some limita-
tions of the model should be considered when interpreting 
the results of those analyses. The approach taken here was 
designed to optimize rapid and efficient testing of large num-
bers of compounds. Thus, a minimal number of wells (3) 
per treatment were evaluated, and our combined analysis 
approach demonstrated a high accuracy (98.4%) of separat-
ing neuroactive from non-neuroactive compounds. However, 
increasing the number of wells/treatment may be valuable 
for further characterization of hits, or testing of a smaller 
number of compounds, as this may provide a more robust 
data set for traditional statistical analyses (e.g., ANOVA fol-
lowed by post-hoc testing). The primary cortical model used 
here has been widely utilized for the study of neuroactive/
neurotoxic effects of chemicals. However, it is a single brain 
region, and activity of compounds that have preferential 
effects on other brain regions [e.g., striatum (dopaminergic) 
or brainstem (glycinergic)] may not be captured or reflected 
accurately by the cortical model. The lack of activity of cho-
linergic compounds in this particular model has been pre-
viously established (McConnell et al. 2012; Valdivia et al. 
2014), although other laboratories have reported effects of 
cholinergic compounds in similar models (Defranchi et al. 
2011; Hondebrink et al. 2016). Other factors that could also 
influence chemical responses are the lack of a blood–brain 
barrier in the MEA system as well as a limited metabolic 
capability of the primary cortical cells compared to the liver.

Conclusion

Primary cortical cultures grown on MEAs respond to a 
broad range of structurally diverse compounds with changes 
in electrical activity. We evaluated neuroactivity for ToxCast 
chemicals in multiple network activity parameters to develop 
a robust assessment of neurotoxicity, and these MEA param-
eters were more sensitive overall than other ToxCast assays. 
By characterizing the concentration–response of literature-
identified active compounds using a set of metrics that 
describes different aspects of network function, it was dem-
onstrated that compounds could be grouped by profiles of 
biological activity, and that these groups were consistent 
with the underlying chemotypes present in the compounds 
tested here. The current model resulted in a reduced set of 
network parameters recommended for processing the MEA 
multi-concentration screen potency data to better identify 
true neurotoxic-actives. With such modifications, this assay 
will be increasingly useful for identifying and characterizing 
the potential neurotoxicity of compounds for which toxicity 
data are lacking.
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